Segmentation via Graph-Spectral Methods and Riemannian Geometry
نویسنده
چکیده
In this paper, we describe the use of graph-spectral techniques and their relationship to Riemannian geometry for the purposes of segmentation and grouping. We pose the problem of segmenting a set of tokens as that of partitioning the set of nodes in a graph whose edge weights are given by the geodesic distances between points in a manifold. To do this, we commence by explaining the relationship between the graph Laplacian, the incidence mapping of the graph and a Gram matrix of scalar products. This treatment permits the recovery of the embedding coordinates in a closed form and opens up the possibility of improving the segmentation results by modifying the metric of the space in which the manifold is defined. With the set of embedding coordinates at hand, we find the partition of the embedding space which maximises both, the inter-cluster distance and the intra-cluster affinity. The utility of the method for purposes of grouping is illustrated on a set of shape silhouettes.
منابع مشابه
Computing Geodesics and Minimal Surfaces via Graph Cuts
Geodesic active contours and graph cuts are two standard image segmentation techniques. We introduce a new segmentation method combining some of their benefits. Our main intuition is that any cut on a graph embedded in some continuous space can be interpreted as a contour (in 2D) or a surface (in 3D). We show how to build a grid graph and set its edge weights so that the cost of cuts is arbitra...
متن کاملPoint Pattern Matching Via Spectral Geometry
In this paper, we describe the use of Riemannian geometry, and in particular the relationship between the Laplace-Beltrami operator and the graph Laplacian, for the purposes of embedding a graph onto a Riemannian manifold. Using the properties of Jacobi fields, we show how to compute an edge-weight matrix in which the elements reflect the sectional curvatures associated with the geodesic paths ...
متن کاملIdentification of Riemannian foliations on the tangent bundle via SODE structure
The geometry of a system of second order differential equations is the geometry of a semispray, which is a globally defined vector field on TM. The metrizability of a given semispray is of special importance. In this paper, the metric associated with the semispray S is applied in order to study some types of foliations on the tangent bundle which are compatible with SODE structure. Indeed, suff...
متن کاملA Geometry Preserving Kernel over Riemannian Manifolds
Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...
متن کاملSpanning Tree Recovery via Random Walks in a Riemannian Manifold
In this paper, we describe the use of Riemannian geometry and graph-spectral methods for purposes of minimum spanning tree recovery. We commence by showing how the sectional curvature can be used to model the edge-weights of the graph as a dynamic system in a manifold governed by a Jacobi field. With this characterisation of the edge-weights at hand, we proceed to recover an approximation for t...
متن کامل